西南交通大学学报 2007, 42(2) 223-228 DOI:     ISSN: 0258-2724 CN: 51-1277/U

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(KB)
[HTML全文]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
无网格法
再生核质点法
有限元法
冲击动力学
本文作者相关文章
赵光明
宋顺成
常志宇
PubMed
Article by ZHAO Guangming
Article by SONG Shuncheng
Article by CHANG Zhiyu

冲击动力过程的无网格数值分析方法

赵光明1,2, 宋顺成2, 常志宇2

1. 安徽理工大学资源开发与管理工程系, 安徽, 淮南, 232001;
2. 西南交通大学应用力学与工程系, 四川, 成都, 610031

摘要

应用再生核质点法实现了冲击过程的数值模拟.为解决冲击过程伴随的材料和几何非线性问题,数值分析中采用增量法.针对冲击速度较低的情况,假设冲击过程为小应变,并引入弹塑性增量本构关系,推导出冲击过程的再生核质点法计算控制方程.采用修正配点法,以满足其本质边界条件.数值模拟结果表明,实例中弹体变形分析结果与ANSYS有限元分析结果一致.

关键词 无网格法   再生核质点法   有限元法   冲击动力学  

Numerical Analysis of Impact Dynamics with Meshless Method

ZHAO Guangming1,2, SONG Shuncheng2, CHANG Zhiyu 2

1. Dept of Resource Exploration and Management Eng., Anhui University of Science and Tech., Huainan 232001, China;
2. Dept. of Applied Mechanics and Eng., Southwest Jiaotong University, Chengdu 610031, China

Abstract:

Dynamic impact processes was analyzed and simulated with reproducing-kernel particle method (RKPM).To solve the nonlinear problem, such as material nonlinearity and geometrical nonlinearity, incremental method was used.For a impact process with a normal impact velocity, the control equation for RKPM was deduced based on a small strain and incremental elasto-plastic constitutive law.The modified collocation method was applied to satisfy the essential boundary conditions.The simulation results of an impact process with RKPM show that the deformation velocity of a solid bullet obtained with RKPM is consistent with that calculated with ANSYS.

Keywords: meshless method   reproducing kernel particle method   FEM   impact dynamics  
收稿日期 2005-06-27 修回日期  网络版发布日期  
DOI:
基金项目:

国家自然科学基金资助项目50674002;安徽理工大学引进人才基金2006YB66

通讯作者:
作者简介: 赵光明(1976- ),男,副教授,博土,主要从事高速冲击和数值分析方面的研究,E-mail:guangmingzhao@163.com

参考文献:
[1] 赵光明,宋顺成.无网格方法在二维弹性力学计算中的应用[J].西南交通大学学报,2004,39(4):476-480.ZHAO Guangming,SONG Shuncheng.Application of meshless method to calculation of 2-D elasticity mechanics problems[J].Journal of Southwest Jiaotong University,2004,39(4):476-480.
[2] LUCK L B.A numerical approach to the testing of the fission hypothesis[J].The Astron J.,1977,8:1 013-1 024.
[3] LIU Wingkam,JUN S,ZHANG Y F.Reproducing kernel particle method[J].Int.J.Numer.Meth.Fluids,1995,20:1 081-1 106.
[4] LIU W K,CHEN Y.Wavelet and multiple scale reproducing kernel methods[J].Int.J.Numer.Meth.Fluids,1995,21:901-931.
[5] CHEN Jiunshyan,PAN Chunhui,WU Chengtang,et al.Reproducing kernel particle methods for large deformation analysis of nonlinear structures[J].Computer Methods Appl.Mech.Engrg,1996,139:195-229.
[6] HULBERT G M.Application of reproducing kernel particle method in electromagnetics[J].Computer Methods Appl.Mech.Engrg.,1996,139:229-236.
[7] URAS R A,CHANG C T,CHEN Y,et al.Multiresolution reproducing kernel particle methods in acoustics[J].J.Comput.Acoust,1997,5(1):71-94.
[8] LIU Wingkam,JUN S,THOMAS S D,et al.Multiresolution reproducing kernel particle method for computation fluid mechanics[J].Int.J.Numer.Meth.Fluids,1997,24:1 391-1 415.
[9] CHEN J S,PAN C H,ROQUE C M,et al.A lagrangian reproducing kernel particle method for metal forming analysis[J].Computer Mech.,1998,22:289-307.
[10] CHEN J H,PAN C H.Application of reproducing kernel particle method to large deformation contact analysis of elastomers[J].Rubber Chemistry and Technology,1998,71:191-213.
[11] LIUWK,NG T Y,WU Y C.Meshfree method for large deformation analysis-a reproducing kernel particle[J].Engineering Structures,2002,24:543-551.
[12] ZHUT,ATLURI S N.A modified collocation method and a penalty formation for enforcing the essential boundary conditions in element free Galerkin method[J].Computer Mech.,1998,21:211-221.
本刊中的类似文章

文章评论 (请注意:本站实行文责自负, 请不要发表与学术无关的内容!评论内容不代表本站观点.)

Copyright 2008 by 西南交通大学学报